skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kosanovic, Beka"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    There has been significant growth in both utility-scale and residential-scale solar installations in recent years, driven by rapid technology improvements and falling prices. Unlike utility-scale solar farms that are professionally managed and maintained, smaller residential-scale installations often lack sensing and instrumentation for performance monitoring and fault detection. As a result, faults may go undetected for long periods of time, resulting in generation and revenue losses for the homeowner. In this article, we present SunDown, a sensorless approach designed to detect per-panel faults in residential solar arrays. SunDown does not require any new sensors for its fault detection and instead uses a model-driven approach that leverages correlations between the power produced by adjacent panels to detect deviations from expected behavior. SunDown can handle concurrent faults in multiple panels and perform anomaly classification to determine probable causes. Using two years of solar generation data from a real home and a manually generated dataset of multiple solar faults, we show that SunDown has a Mean Absolute Percentage Error of 2.98% when predicting per-panel output. Our results show that SunDown is able to detect and classify faults, including from snow cover, leaves and debris, and electrical failures with 99.13% accuracy, and can detect multiple concurrent faults with 97.2% accuracy. 
    more » « less
  2. null (Ed.)
    Battery-based energy storage has emerged as an enabling technology for a variety of grid energy optimizations, such as peak shaving and cost arbitrage. A key component of battery-driven peak shaving optimizations is peak forecasting, which predicts the hours of the day that see the greatest demand. While there has been significant prior work on load forecasting, we argue that the problem of predicting periods where the demand peaks for individual consumers or micro-grids is more challenging than forecasting load at a grid scale. We propose a new model for peak forecasting, based on deep learning, that predicts the k hours of each day with the highest and lowest demand. We evaluate our approach using a two year trace from a real micro-grid of 156 buildings and show that it outperforms the state of the art load forecasting techniques adapted for peak predictions by 11-32%. When used for battery-based peak shaving, our model yields annual savings of $496,320 for a 4 MWhr battery for this micro-grid. 
    more » « less